Bellabeat Case Study — Google Data Analytics Course

Cameron Kemske

12/8/2021

This R Markdown file was created to showcase the R code that was used to perform the cleaning, analysis, and
visualization process of this case study’s data set. This file is complimentary to the “Bellabeat Presentation”
that will be used to showcase additional and final recommendations for this case study’s scenario. This R
Markdown file should be seen as a notebook for the data project and give insights to my thought process and
ability to execute different R and SQL functions.

Scenario

T'am a Junior Data Analyst at the company, “Bellabeat.” The company focuses on women’s health technologies
with similarities towards Apple Fitness and Fitbit. The CMO, Urska Srson, tasked me with analyzing FitBit
data in order to find any recommendations for marketing efforts that can be used for Bellabeat’s smartphone
application.

Downloading All Needed Packages

To properly prepare for the cleaning and analysis process, several key packages have to be installed. Tidyverse
is the basic package that allows for easy data cleaning and manipulation features. Skimr helps with highlighting
and summarizing data. Janitor is for data cleaning. Sqldf allows R to use SQL syntax and command codes
for easier manipulation of data. After all packages are downloaded, installation of those packages comes next.
Now, you are set to begin cleaning the data sets.

install.packages("tidyverse")

Installing package into '/cloud/1lib/x86_64-pc-linux-gnu-library/4.1'
(as 'lib' is unspecified)

install.packages("skimr")

Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.1'
(as 'lib' is unspecified)

install.packages("janitor")

Installing package into '/cloud/1ib/x86_64-pc-linux-gnu-library/4.1'
(as 'lib' is unspecified)

install.packages("sqldf")

Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.1'
(as 'lib' is unspecified)

library(tidyverse)

-- Attaching packages ----———————------——————————————————————— tidyverse 1.3.1 --
v ggplot2 3.3.5 v purrr 0.3.4

v tibble 3.1.6 v dplyr 1.0.7

v tidyr 1.1.4 v stringr 1.4.0
v readr 2.0.2 v forcats 0.5.1
-- Conflicts - —————-—--—-—-—--"---—-————— tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()

library(skimr)

library(janitor)

##

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

##
chisq.test, fisher.test
library(sqldf)

Loading required package: gsubfn

Loading required package: proto

Warning in fun(libname, pkgname): couldn't connect to display ":0"
Loading required package: RSQLite

library(dplyr)

Cleaning Process

Using the read() function, you can import the CSV files that were used for this analysis. During this process,
it is easy to rename the data sets to your specifications by using the assignment function “<-".

daily_activities <- read.csv("dailyActivity_merged.csv")
daily_calories <- read.csv("dailyCalories_merged.csv")
daily_intensities <- read.csv("dailyIntensities_merged.csv")
daily_sleep <- read.csv("sleepDay_merged.csv")

weight_log <- read.csv("weightLogInfo_merged.csv")

Once the files have been uploaded and renamed in the directory, you can use the head() function to see a
preview of the variable names and the first six observations recorded for each of the variables.

head(daily_activities)

#it Id ActivityDate TotalSteps TotalDistance TrackerDistance
1 1503960366 4/12/2016 13162 8.50 8.50
2 1503960366 4/13/2016 10735 6.97 6.97
3 1503960366 4/14/2016 10460 6.74 6.74
4 1503960366 4/15/2016 9762 6.28 6.28
5 1503960366 4/16/2016 12669 8.16 8.16
6 1503960366 4/17/2016 9705 6.48 6.48
LoggedActivitiesDistance VeryActiveDistance ModeratelyActiveDistance
1 0 1.88 0.55
2 0 1.57 0.69
3 0 2.44 0.40
4 0 2.14 1.26
5 0 2.71 0.41

6 0 3.19 0.78
LightActiveDistance SedentaryActiveDistance VeryActiveMinutes

1 6.06 0 25
2 4.71 0 21
3 3.91 0 30
4 2.83 0 29
5 5.04 0 36
6 2.51 0 38
FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes Calories
1 13 328 728 1985
2 19 217 776 1797
3 11 181 1218 1776
4 34 209 726 1745
5 10 221 773 1863
6 20 164 539 1728

head(daily_calories)

Id ActivityDay Calories
1 1503960366 4/12/2016 1985
2 1503960366 4/13/2016 1797
3 1503960366 4/14/2016 1776
4 1503960366 4/15/2016 1745
#i# 5 1503960366 4/16/2016 1863
6 1503960366 4/17/2016 1728

The count() function was used to determine how many observations were in each of the data sets. This type
of function acts as a way of confirming if there is the same number of observations between the three data
sets that log the activities, calories and intensities of the users.

count (daily_activities)

n
1 940

count (daily_calories)

n
1 940

count(daily_intensities)

n
1 940

Creating a data frame that highlights the ID, ActivityDate, and Calories variables is created to perform a
SQL check to see if the data sets have any of the same values for those specific variables.

daily_activities2 <- daily_activities %>
select(Id, ActivityDate, Calories)

Using the sqldf() function, you can use SQL syntax to perform a data query from inside R. Using SQL
commands within R can help with the data cleaning process, as you can use multiple tools within one software,
allowing for faster cleaning and analysis. The ‘SELECT” function allows the returning of all values within
the specified data set from the ‘FROM’ function. The ‘INTERSECT’ function joins the two specified data
sets together that the query results can be compared against each other. The count() function confirms that
the daily_calories data set contains the same observations as the daily activities data set.

sql_checkl <- sqldf ('SELECT *
FROM daily_activities2
INTERSECT
SELECT *
FROM daily_calories')
count (sql_checkl)

n
1 940

Below is the second SQL check for the daily_intensities data set and the creation of the data frame to be
used in the SQL query.

daily_activities3 <- daily_activities %>
select(Id,

ActivityDate,
SedentaryMinutes,
LightlyActiveMinutes,
FairlyActiveMinutes,
VeryActiveMinutes,
SedentaryActiveDistance,
LightActiveDistance,
ModeratelyActiveDistance,
VeryActiveDistance)

Cross referencing the daily_ activities data set with the daily_ intensities data set to confirm that the data is
consistent. The daily_activities data set contains all data from the daily_calories and daily__intensities data
sets. We will be using the daily_ activities data set for the remainder of the analysis.

sql_check2 <- sqldf ('SELECT * FROM daily_activities3 INTERSECT SELECT * FROM daily_intensities')
count (sql_check?2)

n
1 940

The final part of the cleaning/manipulation process is creating a new variable for analysis. Converting the
dates of each recorded observation into their corresponding ‘day of the week’ can be used to highlight the
concentration of different variables occurring on certain days. This new variable can derive insights as to
which days were most active versus which days were most inactive. Marketing efforts can be recommended
based off those insights.

daily_activities4 <- daily_activities

daily_activities4$dayofweek <- weekdays(daily_activities4$ActivityDate)
head(daily_activities4)

Id ActivityDate TotalSteps TotalDistance TrackerDistance
1 1503960366 4/12/2016 13162 8.50 8.50
2 1503960366 4/13/2016 10735 6.97 6.97
3 1503960366 4/14/2016 10460 6.74 6.74
4 1503960366 4/15/2016 9762 6.28 6.28
5 1503960366 4/16/2016 12669 8.16 8.16
6 1503960366 4/17/2016 9705 6.48 6.48
LoggedActivitiesDistance VeryActiveDistance ModeratelyActiveDistance
1 0 1.88 0.55
2 0 1.57 0.69
3 0 2.44 0.40
4 0 2.14 1.26

5 0 2.71 0.41

6 0 3.19 0.78

LightActiveDistance SedentaryActiveDistance VeryActiveMinutes

1 6.06 0 25

2 4.71 0 21

3 3.91 0 30

4 2.83 0 29

5 5.04 0 36

6 2.51 0 38

FairlyActiveMinutes LightlyActiveMinutes SedentaryMinutes Calories dayofweek
1 13 328 728 1985 Tue
2 19 217 776 1797 Wed
3 11 181 1218 1776 Thu
4 34 209 726 1745 Fri
5 10 221 773 1863 Sat
6 20 164 539 1728 Sun

Analysis Process

To begin, let’s look into how many distinct IDs were recording their activity in the FitBit application and
into the data sets of daily_activities4, weight_log, and sleep_ log.

n_distinct(daily_activities4$Id)

[1] 33
n_distinct(daily_sleep$Id)

[1] 24
n_distinct(weight_log$Id)

[1] 8

count(daily_activities4)

n
1 940

count (daily_sleep)

n
1 413

count (weight_log)

n
1 67

From the results of the n_ distinct() functions for the data sets, it was established that there were progressively
less unique IDs recording data starting from the daily_ activities to the weight_log. To see the magnitude,
you can find the percentage change from each data set to the next.

(24/33) - 1

[1] -0.2727273
(8/24) - 1

[1] -0.6666667

The results show a 27% decrease of unique IDs recording data from the daily_ activities data set to the
daily_ sleep data set. Then, a 67% decrease in unique IDs recording data from the daily_ sleep data set
to the weight_ log data set. The analysis’ results were interesting to see the magnitude of dropping user
participation from the recording activity. Finding a way to increase participation across all facets of the data
logging process for the user would be useful to collect more data and make the application more engaging.

The next analysis performed was the basic statistical summary of several key variables within the
daily_ activities data set. This can give a brief overview into the key characteristics of the data and show you
the high-level perspective of your data set.

daily_activities4 %>%
select(TotalSteps,
TotalDistance,
SedentaryMinutes,
VeryActiveMinutes) %>%
summary ()

TotalSteps TotalDistance SedentaryMinutes VeryActiveMinutes
Min. : 0 Min. : 0.000 Min. : 0.0 Min. : 0.00
1st Qu.: 3790 1st Qu.:

0

2.620 1st Qu.: 729.8 1st Qu.: 0.00
Median : 7406 Median : 5.245 Median :1057.5 Median : 4.00
Mean : 7638 Mean 5.490 Mean :991.2 Mean 1 21.16
3rd Qu.:10727 3rd Qu.: 7.713 3rd Qu.:1229.5 3rd Qu.: 32.00
Max. : 36019 Max. :28.030 Max. :1440.0 Max. :210.00

The ‘VeryActiveMinutes’ variable statistics stood out because of the divergence of the mean and median
values. We see the median as 4 minutes and the mean of 21.16 minutes. A hypothesize can form that
several unique IDs are recording high activity levels which brings up the average of this variable. It would be
inconclusive to say that the users are engaging in high-level physical exercise. This could lead to potential
efforts to encourage users to partake in active exercise to increase the median values.

Final part of the analysis was to create a data frame that incorporates the mean values of “Calories” for
each day of the week. This type of analysis would be helpful to see when users are most and least active on
average. Marketing strategies could be put into place to encourage more activity on the least active day.

day_of_week_mean <- sqldf ('SELECT Id, Calories, dayofweek FROM daily_activities4')

day_of_week_mean2 <- day_of_week_mean %>
group_by (dayofweek) %>V
mutate (mean(Calories))

The code above, created the data frame that outlined each day’s average calories burned. The data frame
can then be used to visualize the mean calories burned in a way that is sufficient for sharing to stakeholders.

Another form of analysis is to create a data frame to record the averages of each day of the week. The
numeric values came from the data frame: “day_of week2.” they are assigned to a vector that then can be
arranged visually in a chart or graph.

Avg_cals_per_day <- data.frame (c(2199.571, 2263, 2302.62, 2324.208, 2331.786, 2354.968, 2356.073),
C("Thu“, ||Sunll, ”Wed”, HMonH’ llFrill’ ||Sat|l’ llTueH))

Data Visualization

In order to better represent the findings and insights found during analysis, you can create three relevant data
visualizations. Each visualization reveals an interesting trend found and could be used for future marketing

efforts for Bellabeat.

Bar Chart - Average Calories Burned Tuesday had the highest average calories burned for the users,
while Sunday saw the lowest average calories burned. The difference between the two ends of the range was
93 calories which is almost negligible. However, this could be an opportunity to test new alerts or reminders
for users on Sunday and even Tuesday. The data collected from this would see how much of an effect these
alerts had on increasing calories burned.

ggplot (Avg_cals_per_day, aes(x =y , v = x)) +
geom_bar(stat = 'identity') +
labs(title = 'Average Calories Burned', subtitle = 'By Day of the Week', x = "Days", y = "Calories") -
annotate('text', x = 'Tue', y = 2250, label = '2356 cals') +
annotate('text', x = "Thu", y = 2100, label = '2199 cals')

Average Calories Burned

By Day of the Week

2000 -

1500 -
(%]
Q
S
<

O 1000-

500 -

0 -

Flri Mzan Slat Sll.ln Tkl1u TlIJe Wled

Days

Scatterplot - Spread of Calories This scatter plot was created to see which of the days had the most
variation of user records of calories burned with a similar purpose of the bar chart described above. Thursday
saw the most variation in calories burned. Alerts or encouraging marketing materials could be sent to the
application’s users to encourage consistent exercise/activity on Thursday to promote higher burned calories
amount.

ggplot(daily_activities4, aes(x = Calories, y = dayofweek)) +
geom_point() +
labs(title = 'Correlation Between Calories Burned & Days',
subtitle = 'Each Logged "Calories" Value Displayed')

Correlation Between Calories Burned & Days
Each Logged "Calories" Value Displayed

Sat- o0 [] O OGNNSO COOERIENDEGEID G0 00 © ¢ 0 0 0 0 O

Fri- [} . X I X I XX XN J (I)

Thu - [] [] o0 00 00 GEHEDOGEEOGEDEGD ibéaEnmce® © o0 O ® 00 []
X
()
[¢)]
%Wed- [] (r r N EN XN | _J []
z
©

Tue - [] [] . . X X I Y YNX_ X X NN]

Mon - COOOGEDGEIEDEND GDOGENGESe 0006 000 [N]

Sun - (x . _ X I _JX I ‘X] [] [I]

0 1000 2000 3000 4000 5000
Calories

Trendline - Active Minutes to Calories The scatter plot was used in conjunction with a trend line to
showcase the positive relationship between “TotalSteps” to “Calories” variables. As the user logged more
total steps for the day, they saw an increase in their calories burned. The upward sloped trend line shows a
positive relationship between the two variables. This cna conclude that the simple act of increasing your toal
steps per day can lead to increases in total calories burned.

ggplot(daily_activities4, aes(TotalSteps, Calories)) +
geom_point () +
stat_smooth(1m) +
labs('Correlation Between Total Steps & Calories',

'Smoothed Trendline')

~geom_smooth()” using formula 'y ~ x'

Correlation Between Total Steps & Calories
Smoothed Trendline

5000 -

[]

4000 -

3000 -
()]
Q
S
3]

© 2000-

1000 -

0 -

0 10000 20000 30000
TotalSteps

Sources Jeremiah Hartsock made a similar R Markdown file that was used in this project to give inspiration
and guidance during this data analysis process. Here is the link to their published R Markdown file:
(https://rpubs.com/jerethar96/768783)

https://rpubs.com/jerethar96/768783

	Scenario
	Downloading All Needed Packages
	Cleaning Process
	Analysis Process
	Data Visualization

